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Abstract: Myocardial infarction is one of the more common cardiovascular diseases, and remains the
leading cause of death, globally. Hydrogels (namely, those using natural polymers) provide a reliable
tool for regenerative medicine and have become a promising option for cardiac tissue regeneration
due to their hydrophilic character and their structural similarity to the extracellular matrix. Herein, a
functional ink based on the natural polysaccharides Gellan gum and Konjac glucomannan has, for
the first time, been applied in the production of a 3D printed hydrogel with therapeutic potential,
with the goal of being locally implanted in the infarcted area of the heart. Overall, results revealed
the excellent printability of the bioink for the development of a stable, porous, biocompatible, and
bioactive 3D hydrogel, combining the specific advantages of Gellan gum and Konjac glucomannan
with proper mechanical properties, which supports the simplification of the implantation process.
In addition, the structure have positive effects on endothelial cells’ proliferation and migration that
can promote the repair of injured cardiac tissue. The results presented will pave the way for simple,
low-cost, and efficient cardiac tissue regeneration using a 3D printed hydrogel cardiac patch with
potential for clinical application for myocardial infarction treatment in the near future.

Keywords: konjac/gellan gum hydrogel; bioink; 3D printing; tissue engineering; myocardial
infarction; cardiac tissue regeneration

1. Introduction

Cardiovascular diseases are the primary cause of death worldwide. Myocardial
infarction (MI) provokes the obstruction of blood flow, leading to oxygen deficiency in the
heart muscles and, hence, cell death [1,2]. In these situations, the limited regeneration ability
of the adult cardiomyocytes impairs tissue regeneration, compromising heart functions [3].

In addition, both the pharmacological approaches and stem-cell-implantation-based
therapy have drawbacks. For pharmacological approaches, it is well known that these
do not restore normal heart function, working only as a means to reduce mortality. In
relation to the stem-cell-implantation-based therapies, mesenchymal stem cells are used
commonly for tissue regeneration, due to their immunomodulatory and vascular-repairing
capabilities. However, the maintenance and the survival of transplanted stem cells is
a significant challenge in regenerative medicine [4,5]. Several approaches have been
explored in the production of new and alternative treatments able to restore normal heart
function and reduce the morbidity associated with MI; such approaches have mainly
been patches [4,6,7], injectable gels [8], or decellularized extracellular matrixes (ECM) [9];
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however, the generation of engineering substitutes for highly vascularized cardiac tissues
remains extremely challenging [10,11].

Engineered hydrogels are recognized due to the formation of 3D hydrophilic polymer
networks that mimic the tissue microenvironments [12,13], which is the reason why they
are extensively used in cardiovascular tissue engineering [8,14–16]. The selection of poly-
mers is a critical step, considering the strict and specific requirements for supporting the
mechanical stress of the cardiac tissue. Consequently, the use of a blend is recommended.
The intermolecular interaction between polymers resulted in an increase in the hydrogels
strengthening and toughening, thus obtaining enhanced scaffolds for regeneration of the
damaged myocardium [17]. Natural or synthetic polymers, including collagen, gelatin,
Matrigel, poly(2-hydroxyethyl methacrylate) (PHEMA), poly(N-isopropylacrylamide) (PNI-
PAAM) and polyethylene glycol (PEG), polyvinyl alcohol) (PVA), polyvinyl chloride (PVC),
polycaprolactone (PCL), and polylactic acid (PLA), have been widely reported as being
good options for the production of the hydrogels [18–20].

Such hydrogels have been produced through conventional methodologies, namely
gelation, solvent casting/particulate leaching, freeze-drying, and gas foaming. However,
such approaches are unable to create load-bearing structures that can mimic the complex
hierarchical architecture and mechanical properties of the native extracellular matrix [21,22].
Thus, 3D printing techniques have emerged in recent years, being an advanced fabrica-
tion technique for producing hierarchically ordered structures using hydrogels for tissue
engineering purposes. Such techniques have allowed precise control over the design and
final structure of the scaffolds. They enable the creation of structures that can replicate the
ECM’s complex architecture and physical properties [21–23]. Some pioneering works have
widely reported the use of printable biomaterials, as well as 3D printing approaches for the
fabrication of functional living constructs with 3D customized architecture [24,25]. In this
field, the selection of the bioinks compositions is considered a critical step in the printing
process. Hence, the selected biomaterials should be printable, with both high structural
integrity and reproducibility, and simultaneously should mimic the extracellular matrix of
the human heart tissue, promoting cell proliferation and differentiation [26].

In this study, a 3D printed hydrogel was produced using the extrusion printing pro-
cess. Herein, we formulated a functional bioink based on the natural polysaccharides
gellan gum (GG) and konjac glucomannan (KGM), due to their biocompatibility, structural
integrity, and friendly crosslinking [26,27]. Human umbilical vein endothelial cells (HU-
VECs) were used, due to their angiogenic character, as well as their other crucial biological
functions [28]. In addition to this, HUVECs also have the ability to transdifferentiate into
cardiac muscle [29,30], as well as fuse with surrounding noncardiomyocytes, making those
cells re-enter the cell cycle [31]; this makes them suitable candidates for being integrated in
cardiac patches. It is worth noting that this natural polysaccharide combination had not yet
been explored in the production of 3D printed structures for cardiac tissue regeneration
purposes, and our preliminary results [32] highlighted their potential to be used as a simple,
low-cost bioink for 3D printing tissue-engineering scaffolds. The therapeutic potential of
the 3D printed hydrogel to be used in cardiac tissue regeneration was characterized accord-
ing to their physicochemical and biological properties, namely regarding their mechanical
performance and the suitability for propelling the HUVECs’ cell adhesion and proliferation.

2. Materials and Methods
2.1. Materials

Absolute ethanol (EtOH), hydrochloric acid of≥37% purity, potassium chloride, potas-
sium phosphate dibasic trihydrate, and sodium chloride were obtained from Laborspirit,
Loures, Portugal. Bovine serum albumin of ≥98% purity, as well as fetal bovine serum,
were obtained from Biowest, Nuaillé, France. Crosslinking Agent (50 M CaCl2) was ob-
tained from Cellink, Gothenburg, Sweden. Dimethyl Sulfoxide (DMSO) of ≥99% purity,
as well as disodium hydrogen phosphate, were obtained from VWR chemicals, Radnor,
PA, USA. Dulbecco’s modified Eagle’s medium/nutrient mixture F-12 ham (DMEM-F12),
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3-[4,5 Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), paraformaldehyde
≥36% (w/v), tris(hydroxymethyl) aminomethane and trypsin powder (porcine) 1:250 were
purchased from Sigma-Aldrich, St. Louis, MO, USA. Endothelial cell basal medium was
obtained from PromoCell. GG was obtained from Alfa Aesar, Haverhill, MA, USA. Hoechst
33342®® was purchased from Invitrogen (Carlsbad, CA, USA). Glutaraldehyde 25 % (w/v)
and sodium sulfate were obtained from Acofarma, Madrid, Spain. HUVECs and normal hu-
man dermal fibroblasts (NHDF) were obtained from Promo Cell Labclinics, S.A, Barcelona,
Spain. KGM was obtained from Sports Supplemented Ltd., Colchester, UK. Magnesium
chloride hexahydrate and sodium bicarbonate were obtained from Panreac, Barcelona,
Spain. Penicillin-streptomycin-amphotericin B was obtained from Lonza Walkersville, MD,
USA. Potassium dihydrogen phosphate was obtained from VWR, Radnor, PA, USA.

2.2. Production of 3D Printed Hydrogel Cardiac Patch
2.2.1. Production of the Hydrogel Cardiac Patch Using the Conventional Gelation Method

To produce the scaffold using the conventional method of gelation, solutions of GG
and KGM were prepared and blended. Firstly, the optimization of GG concentration was
performed and then KGM was added. Different concentrations of 1–5% (w/v) GG were
tested, aiming to evaluate its printability. After this optimization process, the selected
concentrations were 3% of GG and 1% of KGM, whereupon the polysaccharides were
dissolved in aqueous solutions at 90 ◦C, following an autoclave process of 120 ◦C for
30 min. Then, 1 mL of solution was taken into a cast to produce the patch. After gelation,
the hydrogel was frozen at −20 ◦C and lyophilized overnight to create the conventional
scaffold (CS).

2.2.2. Production of the Hydrogel Cardiac Patch Using a 3D Printing Method

The 3D printing method used a BioX bioprinter (Cellink, Gothenburg, Sweden) and
followed the same procedure as described in Section 2.2.1 to prepare the GG/KGM solution.
After this, the solution was transferred to a syringe that had been preheated at 70 ◦C.
The syringe with GG/KGM solution was then transferred to the holder. The 3D model
(Supplementary Figure S1) was a square-based prism measuring 20 × 20 × 0.4 mm, with a
48% rectilinear infill. The printer was set to print with a 0.41 mm nozzle and a 0.2 mm layer
height, at an extrusion temperature of 65 ◦C (which was over the gelation temperature) and
room temperature of the bed, at a pressure of 80 kPa and with a 2.5 mm/s printing speed.
After printing, the samples were immersed in a CaCl2 solution for 5 min and then washed
and stored in distilled water. Later, the hydrogel was frozen at −20 ◦C and lyophilized
overnight to produce the 3D printed scaffold (BS).

2.3. Physical and Morphological Characterization
2.3.1. Attenuated Total Reflectance–Fourier-Transform Infrared Spectroscopy Analysis

The chemical characterization of both the polymers and the freeze-dried samples were
carried out using Attenuated Total Reflectance–Fourier-Transform Infrared Spectroscopy
(ATR-FTIR) with a Perkim Elmer ATR-FTIR Spectrum-Two. The ATR-FTIR chemical charac-
terization was undertaken using the determination of the main spectral peaks’ displacement.

2.3.2. Surface Morphology Characterization

The scaffolds morphology was characterized using scanning electron microscopy
(SEM). The samples were freeze-dried (−80 ◦C) in a vacuum for 3 h. After that, samples
were mounted onto aluminum stubs and analyzed using a scanning electron microscope
(SEM, Tabletop microscope TM 3030Plus Hitachi, Toyo, Japan) at various magnifications.

2.3.3. Determination of Mechanical Properties

The mechanical properties were determined using a Texture Analyzer (TA-XT Plus,
Stable Micro Systems, Surrey, UK). The assays were performed following the protocol
described by Kianfar, Ayensu and Boateng (2014) [33], with some adaptations. In short, a 1′′
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cylindrical probe was used to compress samples (i.e., the lyophilized and rehydrated cardiac
scaffolds) using the following settings: pretest speed (0.1 mm/s); test speed (0.1 mm/s);
post-test speed (1 mm/s); strain (50%); trigger force (0.01 N); and mode (return to start).
The adhesiveness (negative area) was determined from the resultant force–time plot in
accordance with the procedure described by Hurler et al. (2012) [34]; in addition, the
Young’s Modulus (E) was determined using the stress–strain relation, in accordance with
the procedure already described in the literature [35]. The measurements were performed
in triplicate, and at room temperature. In these assays, the BS had a cubic shape, with a
size of 1 × 1 × 1 cm, using the same printing settings (with the exception of the printing
speed, which was 6 mm/s).

2.3.4. Swelling and Biodegradation Profile

The swelling ratio was characterized using a previously described method, with slight
modifications [36]. In short, a known weight (W0) of each hydrogel was immersed in
5 mL of the updated simulated body fluid (USBF) solution [37] at 37 ◦C (Edmund Bühler
GmbH TH 15 incubator hood, Bodelshausen, Germany). USBF is a revised version of
simulated body fluid, which had been submitted to the Technical Committee ISO/TC150
of the International Organization for Standardization, with detailed instructions for its
preparation. At predetermined intervals, the swollen samples were removed from the
solution, and excess fluid was removed from the surface, and weighed again (Wt). The
swelling was evaluated using the following equation:

Swelling ratio (%) = ((Wt −W0)/W0) × 100 (1)

Additionally, the biodegradation of scaffolds was determined. W0 of each scaffold was
immersed in 5 mL USBF at pH = 7.4 and at 37 ◦C. At predetermined intervals (1, 3, 7, 14,
and 30 days), the samples were taken off the USBF solution, lyophilized, and then weighed
(Wf) again [38]. Biodegradation was finally determined using the following equation:

Biodegradation (%) = [(Wf −Wi)/Wi] × 100 (2)

2.4. Characterization of the Biological Profile of Scaffolds
2.4.1. Characterization of the Cytotoxic Profile of Scaffolds

The cytotoxic profile of both the 3D printed and conventionally produced scaffolds
were characterized using the MTT assay, which was performed in accordance with the
guidelines set by the International Organization for Standardization (ISO) 10993-5 standard.
A small piece of the hydrogel measuring 2 × 2 mm was placed in each well of a sterile
96-well plate. NHDF cells and HUVECs were seeded at a density of 2 × 104 cells/well, and
the plates were incubated at 37 ◦C under a 5% CO2 humified atmosphere for 24 h. After the
24 h incubation, the medium was removed, and 50 µL of MTT (5 mg/mL in PBS) was added
to each sample, followed by incubation for 4 h in the same conditions previously described.
Finally, MTT was removed, and cells were treated with 200 µL of DMSO (0.04 N) for 30 min.
Then, the absorbance at 570 nm was measured using a microplate reader (Biorad xMark
microplate spectrophotometer, Waltham, MA, USA). As a negative control, nontreated cells
(K−) were used (i.e., cells with culture medium), and the positive control (K+) used EtOH
to induce cell death.

2.4.2. HUVECs Internalization within 3D Printed Scaffolds

Confocal laser scanning microscopy (CLSM) was used to visualize the cell distribution
within hydrogels. HUVEC Cells (1.6 × 104 cells/well) were seeded in hydrogels in µ-Slide
8-well Ibidi imaging plates (Ibidi GmbH, Planegg/Martinsried, Germany) on the surface
of the hydrogel. After 48 h, the nucleus of the cells were stained with Hoechst 33342
(2 µM, Thermo Fisher Scientific, Waltham, MA, USA). Then, the imaging experiments
were performed, using a Zeiss LSM710 laser scanning confocal microscope (Carl Zeiss
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AG, Oberkochen, Germany), whereupon consecutive z-stacks were acquired. The 3D
reconstruction and image analysis were performed using Zeiss Zen 2010 software.

2.4.3. Scratch Assay

HUVECs migration was evaluated through the in vitro scratch assay, validated for
the analysis of cell migration [39]. This was performed as described by Chen, et al. [40],
where 2.5 × 105 cells/well were seeded in a 24-well plate with 1 mL of culture medium
until confluence was attained. Then, a linear scratch was generated in the monolayer
with a sterile 20 µL pipette tip. Any cellular debris were removed by washing the plate
with PBS. Then, 1 mL of fresh medium was added to the cultures, and a scaffold sample
(0.5 cm × 0.5 cm) was placed in contact with cells, which were then incubated at 37 ◦C
inside an incubator with a 5% CO2 humidified atmosphere for 24 h. Cell migration was
determined after 0, 3, 6, 18, and 24 h using an Optika inverted light microscope equipped
with an Optikam B5 digital camera (Bergamo, Italy). Wound closure rate (initial wound
area—wound area at 24 h)/initial wound area) was analyzed and calculated using ImageJ
(Scion Corp., Frederick, MD, USA) and presented as a relative migration compared with
t = 0, which was considered as 100%.

2.5. Statistical Analysis

Each experiment was performed in triplicate (n = 3). A two-way ANOVA, followed
by a Bonferroni and Tukey post hoc test (p < 0.05), was used for cytotoxicity and stability
assays, respectively. Data were considered significant at p < 0.05 (*). The data and statistical
analysis were obtained using GraphPad Prism 9.2 for Windows (Graphpad Software,
San Diego, CA, USA).

3. Results and Discussion
3.1. Scaffold Fabrication

Through the macroscopic images of the produced scaffold in Figure 1, it was possible to
observe that the conventional method resulted in more moisturized and opaque scaffolds
than those that had been 3D printed prior to lyophilization. This was related to the
immersion in calcium solution, resulting in an improvement of the resolution and 3D
polymeric network stability by means of ionic interaction with the cations. Furthermore,
it was also noticed that the lyophilization process did not compromise the scaffold shape.
In fact, the freeze-drying process has typically been used to create porous architecture
scaffolds, preserving their structure [41]. In addition, as expected, the 3D printed method
demonstrated an ability to produce scaffolds with a controlled and reproducible shape,
with a pore size within the range of 200 µm. Indeed, the natural polysaccharide-based
bioink, the extrusion printing, and printing settings each allowed the spatial control on
the deposition of biomaterials, promoting the fabrication of a functional scaffold with 3D
customized architecture. Such results supported the suitability of the polysaccharides as
components of bioinks, as well as their sufficient extrudability to achieve the required
physical and mechanical stability of the 3D printed scaffolds [42].

3.2. Physical and Morphological Characterization
3.2.1. ATR-FTIR Analysis

In the IR spectrum of KG, the more representative peaks appeared at 3341 and
2893 cm−1 displacement, corresponding to the stretching vibration of hydroxy (–OH)
and methyl and methylene (–CH3 and –CH2), respectively [43–45]. In addition, it presented
a peak at 1735 cm−1, which was a consequence of the asymmetric stretching vibration
of carbonyl groups in acetyl. Another peak, corresponding to carbon–oxygen (C–O–C)
stretching vibration in the six-member ring, was observed at 1634 cm−1. Additionally, two
peaks were present at 1412 cm−1, corresponding to (C–H) bending of methylene (–CH2)
carbons, and at 1371 cm−1, corresponding to methyl (–CH3) out-of-plane symmetric bend-
ing deformation, or umbrella peak. In addition, there was a peak at 1243 cm−1 which
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corresponded to the stretching vibration of C–O acetylene group, and other peaks at 1152
and 1021 cm−1, that were caused by the C–O bond. The characteristic absorption bands of
the mannose in the konjac appeared at 871 and 804 cm−1.
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From the IR spectrum of GG, two peaks were present at 3332 and 2883 cm−1, corre-
sponding to the stretching vibration of hydroxyl (–OH) and methyl and methylene (–CH3
and –CH2), respectively [46,47]. Furthermore, two peaks were produced at 1605 and
1404 cm−1 by the symmetric and asymmetric stretching vibration of carbonyl groups in
carboxylic acid salt. Several peaks were also caused at 1298, 1149, and 1019 cm−1, with the
stretching vibration of the C–O bond.

In the IR spectrum of the GG/KGM hydrogel (Supplementary Figure S2), there were
several peaks present at 3333, and 2922 with 2880 cm−1, corresponding to the stretch-
ing vibration of hydroxy (–OH) and methyl and methylene (–CH3 and –CH2), respec-
tively [48–50]. A peak was present at 1725 cm−1 as a consequence of the asymmetric
stretching vibration that corresponded to the carbonyl groups of the acetyl group. This
peak was accompanied by two other peaks at 1605 and 1406 cm−1, which were produced by
the symmetric and asymmetric stretching vibration of carbonyl groups in carboxylic acid
salt. Additionally, another peak at 1378 cm−1 corresponded to methyl (–CH3) out-of-plane
symmetric bending deformation, or umbrella peak. Three peaks caused by the stretching
vibration of C–O of acetyl groups appeared at 1303, 1135, and 1019 cm−1, where the last
of these corresponded to the CH2–OH bond. The peak at 1243 cm−1 was assigned to the
asymmetric stretching of the acetyl chemical group. The characteristic absorption bands
of the mannose in the konjac appeared at 879 and 799 cm−1. According to these results, a
molecular restructuration could be present in this hydrogel, but must be confirmed with
additional experiments.

3.2.2. Surface Morphology Characterization

It has been widely reported in the literature that biomaterial surface topography is
a crucial parameter influencing cell adhesion and proliferation [51,52]. In this study, the
surface of 3D printed scaffolds (BS) was characterized through SEM analysis. The printing
process demonstrated suitability for the production of 3D hydrogels based on natural
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polysaccharides, once presented with a rough surface with an interconnected porous
network (Figure 2). The 3D scaffold showed roughness and irregularities in its surface,
suggesting it possessed a high number of anchorage points suitable for protein adsorption,
cell anchorage, and the production of extracellular matrix compounds [53–55].
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3.2.3. Determination of Mechanical Properties

The cardiac patches for tissue regeneration are subjected to considerable mechanical
load and must be flexible, elastic, and mechanically stable [56]. The E module results have
been presented in Figure 3. For lyophilized scaffolds, the results indicated that the E module
of CS (26.077 ± 0.596 MPa) was about four times higher than the BS (6.121 ± 1.228 MPa).
Ionic crosslinking may be responsible for this higher firmness, but the mesh (i.e., the infill
pattern of the BS samples) will strongly affect this behavior, too. Nevertheless, when the
scaffolds were rehydrated, the E values were significantly lower, with 3.069 ± 0.056 MPa
and 1.154 ± 0.082 MPa for BS and CS, respectively. This suggested that, once rehydrated,
the produced hydrogel was able to recover its flexibility. In addition, it reinforced the ability
of 3D printing process to allow a controlled deposition of the bioink when producing the
scaffold, resulting in a more homogeneous and interconnected polymeric network than the
conventional method, and consequently resulting in a lower difference between dry and
hydrated state. Such evidence indicated that the produced 3D printed hydrogel would be
suitable for implantation [57].

Such low E values obtained for the produced hydrogels were in agreement with those
available in the literature, where the E module of native human heart ranges are indicated
as ranging from 0.02 to 0.5 MPa [58]; as such, an E value between 7 and 20 MPa is suitable
for cardiac tissue engineering applications [56,59–63]. In addition, another study reported
hydrated scaffolds with E values ranging from 1 to 5 MPa [64].

In general, the results obtained for E module indicated that the application of the 3D
printed hydrogel was not compromised, as the scaffolds did not exhibit brittleness [33]. In
addition, it was expected that the biodegradability of the polymer occurred simultaneously
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and synchronously with cell migration and proliferation, thus changing the mechanical
characteristics of the scaffolds along with cellular activity and proliferation.
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Regarding adhesiveness, lyophilized scaffolds had none, as expected. The rehydrated
BS showed adhesiveness values of (−0.515 ± 1.121) N·s. Such parameters could assess the
retention time of hydrogel at the implantation site. It has been previously described that the
polymer concentration is closely related to its adhesive characteristics, wherein scaffolds
with increasing polymer concentrations have better adhesive behavior [65,66]. In addition,
the adhesiveness of BS has been of great interest because the adhesive materials are more
likely to promote cell adhesion and avoid scar tissue formation, which is essential in cardiac
tissue regeneration, and supports the successful implantation of a 3D printed scaffold
with suitable mechanical properties for cardiac tissue regeneration. These results (when
combined with the E values) indicated that these 3D printed cardiac hydrogel could be
safely handled and applied without losing their structure, as well as provide the mechanical
support for the weakened ventricular wall [67].

3.2.4. Swelling and Biodegradation

The swelling profile of a biomaterial is the property that gives information about the
polymeric matrix’s behavior when placed in contact with body fluids [68]. The ability of
hydrogels to absorb water is widely recognized in the literature, since hydrogels are defined
as a class of water-swollen polymers with high water content and physical properties
similar to soft tissue [69]. In addition, the equilibrium swelling capacity echoes its ability to
transport water, nutrients, and metabolic wastes between the cells and the medium [70].

As a consequence, the swelling profile of the scaffolds produced through both techniques
were characterized in contact with USBF, as shown in Figure 4. Concerning the maximum
water absorption ability, the CS presented higher percentage values (3180.33 ± 304.03)% in
comparison to the BS scaffold (2374.67 ± 92.36)%. After this maximum peak, both scaffold
formulations exhibited a sustained swelling profile for at least 360 min.

In general, the higher water content in scaffolds reflects its high hydrophilic character,
as well as the increased presence of the OH groups on the polymeric networks of GG and
KGM, as has been reported elsewhere [47,71,72].

Such differences between CS and BS scaffolds can be explained essentially by the
precise control over structural properties, geometry, microarchitecture, pore size, and pore
interconnectivity, and verified using the 3D printing methodology [73]. Moreover, the
controlled swelling profile of BS may be related to a more homogeneous distribution of
polysaccharides across the hydrogel structure and the ionic crosslinking method used,
which implies the formation of ionic bonds responsible for increasing its cross-linking
density, as well as reducing its swelling capacity [46].
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The production of structures with defined architecture, pore size, and interconnectiv-
ity was only achieved in BS scaffolds. Unlike the conventional method, the BS scaffolds
promoted the production of porous matrices with unstable physical and mechanical prop-
erties, which was in accordance with the swelling ability. In addition, higher swelling
percentage values were considered undesirable for tissue engineering purposes, because
an uncontrolled swelling profile can compromise the structural stability of scaffolds, which
will affect the tissue formation process [74].

It is also important to note that these findings agree with the porosity results that have
been defined in previous studies [52], where a direct influence of the production method
on the scaffolds’ porosity was verified.

On the other hand, the biodegradation profile of scaffolds was also characterized, since
a given biomaterial must be biodegradable at a controlled rate without inducing adverse
cytotoxic effects. As such, in Figure 5, it is possible to notice that no statistical differences
were observed between the CS and BS scaffolds. After 30 days of being immersed in
USBF, CS presented a weight loss of 52.7 ± 4.4%, whereas BS lost 51.0 ± 3.5%. The results
seem to indicate a controlled degradation of the polymers inside the scaffold, which is
essential for cell incorporation into this scaffold. In addition, a controlled degradation
profile is desirable because the biomaterial must guarantee the provisional support for cell
anchorage, proliferation, and differentiation [75].

Overall, data obtained for mechanical characterization when integrated with the
swelling and biodegradation profile revealed that this 3D printing technique allowed for
the production of hydrogels with a typical performance sufficient to be confirmed for
natural polymeric hydrogels, regarding the plasticity, the initial burst for fluid absorption,
and stability in physiological conditions, as well as to act as a provisional structural matrix
for promoting cardiac tissue regeneration.

3.3. Characterization of the Biological Profile of Scaffolds
3.3.1. Characterization of the Cytotoxic Profile of Scaffolds

The biocompatibility of scaffolds is fundamental for their application in the biomed-
ical field. In this study, cell cytocompatibility was characterized by seeding NHDF and
HUVEC cells in contact with the scaffolds. NHDFs were used in the first screening of the
materials, in accordance with ISO 10933-5, whereas HUVECs were used due to their pivotal
role in cardiac tissue formation. The results outlined that both scaffolds produced were
biocompatible for NHDFs (data not shown) and HUVECs cells (Figure 6). In contact with
NHDF, the cell viability percentage values were 135.3 ± 4.7% for CS, and 128.8 ± 3.3% for
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BS, whereas for HUVECs cells the values of 128.4 ± 2.4% for CS, and 117.8 ± 1.5% for BS
were obtained, when compared to control group (i.e., untreated cells).
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It is evident that the production method neither influenced the biological properties
of the scaffolds nor reinforced the biocompatible character of GG and KGM, as has been
reported elsewhere [27,47,76]. Moreover, GG and KGM are well described for their bioac-
tivity, especially for enhancing cell proliferation, and other authors have already used GG
for drug delivery and tissue engineering [26,47,55,71]; meanwhile, KGM has been used in
wound healing purposes [27] and as a scaffold for vascularized bone tissues [77].

3.3.2. Characterization of HUVECs Adhesion and Internalization

Considering the results we obtained, cell interaction with the BS surface was eval-
uated through SEM analysis. Figure 7 shows that the hydrophilic character of natural
polysaccharide-based hydrogel and surface roughness of the hydrogel was suitable for cell
adhesion and proliferation. A cardiac hydrogel must ensure cellular attachment, growth,
and migration by acting as a 3D scaffold matrix. Apart from this, the biocompatible profile
was also rather important [5]. In fact, after 48 h, it can be observed that the cells adhered
to the material’s surface, establishing interconnections between them that contributed to
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the formation of endothelium, which regulates the mass transport exchange as well as
controls the blood flow; this is fundamental for the in vitro fabrication of vascularized
cardiac tissues [52,78].
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The literature suggested that the environmental cue and topographic properties control
the endothelial cell behavior, highlighting that endothelial cells are very prone to topological
responses [79–81].

In addition, HUVECs migration and proliferation within BS were also characterized
using confocal laser scanning microscopy (CLSM) analysis. The CLSM images (Figure 7)
show that cells were able to migrate into the BS structure. Further, the depth-color-coding
images also confirmed that the HUVECs cells migrated within the hydrogels. Most cells
remained below the BS surface, at a depth of 6–10 µm after 48 h (which appears in yellow).

3.3.3. Scratch Assay

The effect of BS on HUVECs migration was studied through a scratch assay, following
a previously reported procedure [27]. The migration of HUVECs cells was measured using
image analysis software after 3, 6, 9, 12, and 24 h.

Through the analysis of the results presented in Figure 8, it is possible to see that the
BS induced the cell migration to the wound area, promoting an improved wound closure
in comparison to the control group. Such results corroborated the ability of the products
resulting from GG/KGM polysaccharide degradation (e.g., residues of glucose, mannose,
glucuronic acid, and glucomannan) to encourage the cell migration [47,76,82].

Altogether, these results demonstrate the potential of GG/KGM as a bioink in the
production of stable hydrogel matrices able to promote endothelial cell activity. In this
study, the potential uses of the 3D printing techniques were also reinforced, being an
emergent methodology that must be explored for the development of 3D living functional
hydrogels that might surpass the current challenges present in the cardiac tissue regenera-
tion field. For this paper, a simple and low-cost bioinks was developed to be used for the
3D printing of hydrogel structures for cardiac tissue regeneration. We intended to produce
a natural material-based bioink that was suitable for 3D printing techniques without using
any toxic solvents. This bioink conjugated two natural polymers (GG and KGM) with
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complementary characteristics. GG was chosen for structural proposes, as well as for its
thermoresponsive characteristics, which would facilitate the 3D printing process. On the
other hand, KGM was chosen to increase the bioactivity of the hydrogels. Consequently,
these 3D structures presented a rough surface, which gave lots of anchorage points for cells,
with an interconnected porous network. Moreover, the 3D printed hydrogels had suitable
mechanical properties, with a controllable swelling and biodegradation profile. Finally,
they exhibited biocompatible characteristics in contact with HUVEC, encouraging their
adhesion to the BS’ surface, as well as encouraging internalization and migration; such
events are crucial in the process of cardiac tissue formation.
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4. Conclusions

In this study, the suitability of natural polysaccharides-based bioink to produce 3D
printed hydrogels was tested for the first time. To accomplish such a purpose, a combination
of GG and KGM was prepared, and then the production of 3D printed hydrogel was
successfully achieved.

Our main findings were that the 3D printed structures presented mechanical, physico-
chemical, and biological properties adequate for cardiac tissue regeneration. Moreover, the
3D printed structures after the freeze-dried process remain stable, with similar mechanical
integrity. Such properties will facilitate the upscaling of this technique, prompting the
commercial interest of the produced structures. Overall, such pioneering work shows the
potential of optimizing the natural compounds-based bioinks to produce 3D structures for
biomedical applications, namely cardiac tissue restoration after myocardial infarction.

In the future, in vivo evaluation will be carried out, as well as bioink optimization
for cell incorporation prior to the bioprinting process. The results presented will pave
the way for the simple, low-cost, and efficient development of therapies for cardiac tissue
regeneration using bioprinting.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15132824/s1, Supplementary Figure S1: 3D printing process
of the KGM/GG scaffold; Supplementary Figure S2: ATR-FTIR spectra of KGM and GG pure
materials compared with a KGM and GG blended hydrogel produced by casting, conventional
scaffold (CS)—up, and by bioprinted scaffold (BS)—bottom.

https://www.mdpi.com/article/10.3390/polym15132824/s1
https://www.mdpi.com/article/10.3390/polym15132824/s1
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